Department of Mathematics
Bachelor of Science in Mathematics Program II (Bachelor of Science in Mathematics)
Students on Summer 2021, Fall 2021, or Spring 2022 requirements MATHBS2
Requirements
The major requires at least 33 credit hours, including the requirements listed below.
- Linear Algebra. One (1) course:
- MATH-M 301 Linear Algebra and Applications
- MATH-M 303 Linear Algebra for Undergraduates
- MATH-S 303 Honors Course in Linear Algebra
MATH-M 301 Linear Algebra and Applications
- Credits
- 3
- Prerequisites
- MATH-M 212, MATH-M 213, or MATH-S 212; or MATH-M 211 and CSCI-C 241; or MATH-S 211 and CSCI-C 241
- Description
- Solving systems of linear equations, matrix algebra, determinants, vector spaces, eigenvalues and eigenvectors. Selection of advanced topics. Applications throughout. Computer used for theory and applications.
- Repeatability
- Credit given for only one of MATH-M 301 or MATH-M 303.
- Summer 2025CASE NMcourseSpring 2025CASE NMcourseFall 2024CASE NMcourse
MATH-M 303 Linear Algebra for Undergraduates
- Credits
- 3
- Prerequisites
- MATH-M 212, MATH-M 213, or MATH-S 212; or MATH-M 211 and CSCI-C 241; or MATH-S 211 and CSCI-C 241
- Description
- Introduction to the theory of real vector spaces. Coordinate s, linear dependence, bases. Linear transformations and matrix calculus. Determinants and rank. Eigenvalues and eigenvectors.
- Repeatability
- Credit given for only one of MATH-M 301, MATH-M 303, or MATH-S 303.
- Summer 2025CASE NMcourseSpring 2025CASE NMcourseFall 2024CASE NMcourse
MATH-S 303 Honors Course in Linear Algebra
- Credits
- 3
- Prerequisites
- Consent of department
- Description
- Honors version of MATH-M 303. For students with unusual aptitude and motivation.
- Repeatability
- Not open to those who have had MATH-M 301 or MATH-M 303.
- Summer 2025CASE NMcourseSpring 2025CASE NMcourseFall 2024CASE NMcourse
- Calculus III. One (1) course:
- MATH-M 311 Calculus III
- MATH-S 311 Honors Course in Calculus III
MATH-M 311 Calculus III
- Credits
- 4
- Prerequisites
- MATH-M 212, MATH-M 213, or MATH-S 212
- Description
- Elementary geometry of 2, 3, and n-space; functions of several variables; partial differentiation; minimum and maximum problems; multiple integration.
- Summer 2025CASE NMcourseSpring 2025CASE NMcourseFall 2024CASE NMcourse
MATH-S 311 Honors Course in Calculus III
- Credits
- 4
- Prerequisites
- MATH-S 212 or consent of instructor; and MATH M-301, MATH M-303, or MATH S-303
- Description
- Honors version of MATH-M 311, covering geometry of 2, 3, and n-space; functions of several variables; partial differentiation; minimum and maximum problems; and multiple integration. For students with unusual aptitude and motivation.
- Repeatability
- Credit given for only one of MATH-M 311 or MATH-S 311.
- Summer 2025CASE NMcourseSpring 2025CASE NMcourseFall 2024CASE NMcourse
- Calculus IV. One (1) course:
- MATH-M 312 Calculus IV
- MATH-S 312 Honors Course in Calculus IV
MATH-M 312 Calculus IV
- Credits
- 3
- Prerequisites
- MATH-M 311 or MATH-S 311
- Description
- Differential calculus of vector-valued functions, transformation of coordinates, change of variables in multiple integrals. Vector integral calculus: line integrals, Green\'s theorem, surface integrals, Stokes\' theorem. Applications.
- Repeatability
- Credit given for only one of MATH-M 312 or MATH-S 312.
MATH-S 312 Honors Course in Calculus IV
- Credits
- 3
- Prerequisites
- MATH-S 311 or consent of instructor
- Description
- For students with unusual aptitude and motivation.
- Repeatability
- Credit given for only one of MATH-M 312 or MATH-S 312.
- Introduction to Differential Equations with Applications I. One (1) course:
- MATH-M 343
- MATH-S 343 Honors Course in Differential Equations
MATH-S 343 Honors Course in Differential Equations
- Credits
- 3
- Prerequisites
- MATH-S 212 or consent of instructor
- Description
- Introduction, with historical examples, first order ordinary differential equations (ODEs) and applications, second order linear ODEs, linear ODEs of higher order, series solutions to linear ODEs, and numerical methods for ODEs. In addition, some theoretical aspects will be studied in detail such as the Picard existence/uniqueness theorem for initial-value problems, convergence of series solutions, and the matrix exponential exp(tA).
- Summer 2025CASE NMcourseSpring 2025CASE NMcourseFall 2024CASE NMcourse
- Introduction to Differential Equations with Applications II. One (1) course:
- MATH-M 344
- MATH-S 344 Honors Course in Differential Equations II
MATH-S 344 Honors Course in Differential Equations II
- Credits
- 3
- Prerequisites
- MATH-M 212 or MATH-S 212; and MATH-M 301, MATH-M 303, or MATH-S 303; and MATH-S 343
- Description
- Covers the topics of MATH-M 344, in addition to more theoretical material, which may include topics such as the uniqueness theorem for the inversion of the Laplace transform, introduction to the theory of distributions, derivation of the heat and wave equations, eigenvalues of Sturm-Liouville boundary problems, and oscillation theory applied to special functions. Meets with MATH-M 344, and the additional material will be incorporated in weekly homework sets. Exams will include some of this additional material.
- Repeatability
- Credit given for only one of MATH-M 344 or MATH-S 344.
- Summer 2025CASE NMcourseSpring 2025CASE NMcourseFall 2024CASE NMcourse
- Analysis I. One (1) course:
- MATH-M 413 Introduction to Analysis I
- MATH-S 413 Honors Course in Analysis I
MATH-M 413 Introduction to Analysis I
- Credits
- 3
- Prerequisites
- MATH-M 301, MATH-M 303, or MATH-S 303; and MATH-M 311 or MATH-S 311
- Description
- Modern theory of real number , limits, functions, sequences and series, Riemann-Stieltjes integral, and special topics.
MATH-S 413 Honors Course in Analysis I
- Credits
- 3
- Prerequisites
- MATH-S 312; or consent of instructor
- Description
- Differentiable transformations defined on Euclidean space, inverse and implicit function theorems. Lebesgue integration over Euclidean space and transformation of integrals. Exterior algebra, measure and integration on manifolds. Stokes\' theorem. Closed and exact forms.
- Analysis II. One (1) course:
- MATH-M 414 Introduction to Analysis II
- MATH-M 415 Elementary Complex Variables with Applications
- MATH-S 414 Honors Course in Analysis II
- MATH-S 415 Honors Elementary Complex Variables
MATH-M 414 Introduction to Analysis II
- Credits
- 3
- Prerequisites
- MATH-M 413 or MATH-S 413
- Description
- Continuation of MATH-M 413. Functions of several variables, Taylor series, extreme values. Manifolds in Euclidean space, Implicit Function Theorem, Inverse Function Theorem. Divergence Theorem and other classical theorems of vector calculus. Special topics.
- Repeatability
- Credit given for only one of MATH-M 414 or MATH-S 414.
MATH-M 415 Elementary Complex Variables with Applications
- Credits
- 3
- Prerequisites
- MATH-M 311, MATH-S 311, or consent of instructor
- Description
- Algebra and geometry of complex numbers, elementary functions of a complex variable, power series, integrations, calculus of residues, conformal mapping. Application to physics.
- Repeatability
- Credit given for only one of MATH-M 415 or MATH-S 415.
MATH-S 414 Honors Course in Analysis II
- Credits
- 3
- Prerequisites
- MATH-S 413; or consent of instructor
- Description
- Differentiable transformations defined on Euclidean space, inverse and implicit function theorems. Lebesgue integration over Euclidean space and transformation of integrals. Exterior algebra, measure and integration on manifolds. Stokes\' theorem. Closed and exact forms.
- Repeatability
- Credit given for only one of MATH-S 414 or MATH-M 414.
MATH-S 415 Honors Elementary Complex Variables
- Credits
- 3
- Prerequisites
- MATH-S 311; or consent of instructor
- Description
- For students with unusual aptitude and motivation. Algebra and geometry of complex numbers, elementary functions of a complex variable, power series, contour integrals, calculus of residues, conformal mapping.
- Repeatability
- Credit given for only one of MATH-M 415 or MATH-S 415.
- Applied Mathematics Courses. At least two (2) courses:
- MATH-M 441 Introduction to Partial Differential Equations with Applications I
- MATH-M 442 Introduction to Partial Differential Equations with Applications II
- MATH-M 451 The Mathematics of Finance
- MATH-M 463 Introduction to Probability Theory I
- MATH-M 464 Introduction to Probability Theory II
- MATH-M 471 Numerical Analysis I
- MATH-M 472 Numerical Analysis II
MATH-M 441 Introduction to Partial Differential Equations with Applications I
- Credits
- 3
- Prerequisites
- MATH-M 301, MATH-M 303, or MATH-S 303; and MATH-M 311 or MATH-S 311; and MATH-M 343 or MATH-S 343
- Notes
- R: MATH-M 312 or MATH-S 312
- Description
- Derivation and methods of solution of classical partial differential equations of mathematical physics: heat, wave, and Laplace equations. Separation of variables, Fourier series, Sturm-Liouville theory, special functions, Green\'s functions, Fourier transform, first order equations, characteristics and special topics.
MATH-M 442 Introduction to Partial Differential Equations with Applications II
- Credits
- 3
- Prerequisites
- MATH-M 441
- Description
- Derivation and methods of solution of classical partial differential equations of mathematical physics: heat, wave, and Laplace equations. Separation of variables, Fourier series, Sturm-Liouville theory, special functions, Green\'s functions, Fourier transform, first order equations, characteristics and special topics.
MATH-M 451 The Mathematics of Finance
- Credits
- 3
- Prerequisites
- MATH-M 311 or MATH-S 311; and MATH-M 365 or MATH-M 463 or MATH-S 463
- Description
- Course covers probability theory, Brownian motion, Ito\'s Lemma, stochastic differential equations, and dynamic hedging. These topics are applied to the Black-Scholes formula, the pricing of financial derivatives, and the term theory of interest rates.
MATH-M 463 Introduction to Probability Theory I
- Credits
- 3
- Prerequisites
- MATH-M 301, MATH-M 303, or MATH-S 303; and MATH-M 311 or MATH-S 311
- Description
- The meaning of probability. Random experiments, conditional probability, independence. Random variables, expected values and standard deviations, moment generating functions. Important discrete and continuous distributions. Poisson processes. Multivariate distributions, basic limit laws such as the central limit theorem.
- Repeatability
- Credit given for only one of MATH-M 463 or MATH-S 463.
MATH-M 464 Introduction to Probability Theory II
- Credits
- 3
- Prerequisites
- MATH-M 463 or MATH-S 463
- Description
- Conditional distributions and expectation, linear and nonlinear regression; simple stochastic processes: Poisson process, process with independent increments, random walk, Markov chain with finite state space; information theory.
MATH-M 471 Numerical Analysis I
- Credits
- 3
- Prerequisites
- MATH-M 301, MATH-M 303, or MATH-S 303; and MATH-M 311 or MATH-S 311; and MATH-M 343 or MATH-S 343
- Notes
- Knowledge of a computer language such as FORTRAN, C, C++, etc., is essential for success in this course. Students with other programming backgrounds should consult the instructor
- Description
- Interpolation and approximation of functions, numerical integration and differentiation, solution of nonlinear equations, acceleration and extrapolation, solution of systems of linear equations, eigenvalue problems, initial and boundary value problems for ordinary differential equations, and computer programs applying these numerical methods.
MATH-M 472 Numerical Analysis II
- Credits
- 3
- Prerequisites
- MATH-M 301, MATH-M 303, or MATH-S 303; and MATH-M 311 or MATH-S 311; and MATH-M 343 or MATH-S 343
- Notes
- Knowledge of a computer language such as FORTRAN, C, C++, etc., is essential for success in this course. Students with other programming backgrounds should consult the instructor.
- Description
- Interpolation and approximation of functions, numerical integration and differentiation, solution of nonlinear equations, acceleration and extrapolation, solution of s of linear equations, eigenvalue problems, initial and boundary value problems for ordinary differential equations, and computer programs applying these numerical methods.
- Addenda requirements*.
- Computer Science**. One (1) course:
- CSCI-A 201 Introduction to Programming I
- CSCI-H 200 Introduction to Computers and Programming, Honors
- CSCI-C 200 Introduction to Computers and Programming
- CSCI-C 211 Introduction to Computer Science
- CSCI-H 211 Introduction to Computer Science-Honors
CSCI-A 201 Introduction to Programming I
- Description
- Fundamental programming constructs, including loops, arrays, classes and files. General problem-solving techniques. Emphasis on modular programming, user-interface design, and developing good programming style. Not intended for computer science majors.
- Additional information
- Credit hour, prerequisite, and other information cannot be displayed for this course. If this is a course outside of the College of Arts and Sciences, please see the appropriate school's bulletin for additional information.
CSCI-H 200 Introduction to Computers and Programming, Honors
- Description
- Honors version of CSCI-C 200. This course is an introduction, broadly, to algorithmic thinking and, specifically, to programming. It teaches the basics of programming using real world applications in natural, physical and social sciences. Students will develop ability to program by identifying problems in real world and then creating a program that solves the problem.
- Additional information
- Credit hour, prerequisite, and other information cannot be displayed for this course. If this is a course outside of the College of Arts and Sciences, please see the appropriate school's bulletin for additional information.
CSCI-C 200 Introduction to Computers and Programming
- Description
- This course is an introduction, broadly, to algorithmic thinking and, specifically, to programming. It teaches the basics of programming using real world applications in natural, physical and social sciences. Students will develop ability to program by identifying problems in real world and then creating a program that solves the problem.
- Additional information
- Credit hour, prerequisite, and other information cannot be displayed for this course. If this is a course outside of the College of Arts and Sciences, please see the appropriate school's bulletin for additional information.
CSCI-C 211 Introduction to Computer Science
- Description
- A first course in computer science for those intending to take advanced computer science courses. Introduction to programming and to algorithm design and analysis. Using the Scheme programming language, the course covers several programming paradigms. Lecture and laboratory.
- Additional information
- Credit hour, prerequisite, and other information cannot be displayed for this course. If this is a course outside of the College of Arts and Sciences, please see the appropriate school's bulletin for additional information.
CSCI-H 211 Introduction to Computer Science-Honors
- Description
- Honors version of CSCI-C 211.
- Additional information
- Credit hour, prerequisite, and other information cannot be displayed for this course. If this is a course outside of the College of Arts and Sciences, please see the appropriate school's bulletin for additional information.
- Outside Focal Area. Nine (9) credit hours, approved by the Mathematics department, in one (1) of the following disciplines:
- Astronomy
- Biology
- Chemistry
- Cognitive Science
- Computer Science
- Economics
- Geology
- Physics
- Statistics
- Other departments with approval
- Computer Science**. One (1) course:
- Major GPA, Hours, and Minimum Grade Requirements.
- Major GPA. A GPA of at least 2.000 for all courses taken in the major—including those where a grade lower than C- is earned—is required.
- Major Minimum Grade. Except for the GPA requirement, a grade of C- or higher is required for a course to count toward a requirement in the major.
- Major Upper Division Credit Hours. At least 18 credit hours in the major must be completed at the 300–499 level.
- Major Residency. At least 18 credit hours in the major must be completed in courses taken through the Indiana University Bloomington campus or an IU-administered or IU co-sponsored Overseas Study program.
Notes
Major Area Courses
-
Unless otherwise noted below, the following courses are considered in the academic program and will count toward academic program requirements as appropriate:
- Any course at the 200–499 level with the
MATH
subject area prefix—as well as any other subject areas that are deemed functionally equivalent - Any course contained on the course lists for the academic program requirements at the time the course is taken—as well as any other courses that are deemed functionally equivalent—except for those listed only under Addenda Requirements
- Any course directed to a non-Addenda requirement through an approved exception
- Any course at the 200–499 level with the
Exclusions
The following courses cannot be applied toward major requirements:
- Any MATH-E 100–499
- Any MATH-K 100–499
- MATH-M 330 Exploring Mathematical Ideas
- MATH-M 333
- MATH-M 347 Discrete Mathematics
MATH-M 330 Exploring Mathematical Ideas
- Credits
- 3
- Prerequisites
- MATH-M 211 or MATH-S 211
- Notes
- Does not count toward major requirements
- Description
- An experimental course to illustrate important ideas in major areas of mathematics, including number theory, group theory, topology, geometry, and probability. Additional topics may include newly emerging fields, such as chaos theory.
- Summer 2025CASE NMcourseSpring 2025CASE NMcourseFall 2024CASE NMcourse
MATH-M 347 Discrete Mathematics
- Description
- None
- Additional information
- Credit hour, prerequisite, and other information cannot be displayed for this course. If this is a course outside of the College of Arts and Sciences, please see the appropriate school's bulletin for additional information.
Restrictions
The following restrictions apply to the minimum credit hours required in the major:
- May be repeated for a maximum of 6 credit hours:
- MATH-X 170 Service Learning in Mathematics: Community Outreach
- May be repeated once with approval of Department of Mathematics for a maximum of 6 credit hours:
- MATH-X 373 Internship in Professional Practice
- May be repeated for a maximum of 12 credit hours:
- MATH-X 390 Readings and Research
MATH-X 170 Service Learning in Mathematics: Community Outreach
- Credits
- 1
- Prerequisites
- MATH-M 211, MATH-S 211, or consent of instructor
- Corequisites
- Current enrollment in another mathematics course
- Description
- Students will work within the community to foster interest, knowledge, and appreciation in mathematics. Assignments will include assisting with activities designed for primary and secondary school levels, documenting those activities in a parental guide, and suggesting related activities for children to pursue at home.
- Repeatability
- May be repeated for a maximum of 6 credit hours in MATH-X 170 and MATH-Y 201
- Grading
- S/F graded.
MATH-X 373 Internship in Professional Practice
- Credits
- 1–3 credit hours
- Prerequisites
- Consent of department
- Description
- Professional work experience involving significant use of mathematics or statistics. Evaluation by employer and Department of Mathematics. Does not count toward major requirements.
- Repeatability
- May be repeated once with approval of Department of Mathematics for a maximum of 6 credit hours in MATH-X 373 and MATH-Y 398.
- Grading
- S/F grading
MATH-X 390 Readings and Research
- Credits
- 1–3 credit hours
- Prerequisites
- Consent of supervising member of Mathematics faculty
- Description
- Supervised problem solving.
- Repeatability
- May be repeated for a maximum of 12 credit hours in MATH-M 295 and MATH-X 390.
This program of study cannot be combined with the following:
- Bachelor of Arts in Economics and Mathematics (ECONMATHBA)
- Bachelor of Arts in Mathematics (MATHBA)
- Bachelor of Arts in Mathematics and Economics (MATHECONBA)
- Bachelor of Science in Mathematics (MATHBS)
- Bachelor of Science in Mathematics Program I (MATHBS1)
- Minor in Mathematics (MATHMIN)
Exceptions to and substitutions for major requirements may be made with the approval of the unit's Director of Undergraduate Studies, subject to final approval by the College of Arts and Sciences.
The Bachelor of Science degree requires at least 120 credit hours, to include the following:
- College of Arts and Sciences Credit Hours. At least 100 credit hours must come from College of Arts and Sciences disciplines.
- Upper Division Courses. At least 36 credit hours (of the 120) must be at the 300–499 level.
- College Residency. Following completion of the 60th credit hour toward degree, at least 36 credit hours of College of Arts and Sciences coursework must be completed through the Indiana University Bloomington campus or an IU-administered or IU co-sponsored Overseas Study program.
- College GPA. A College grade point average (GPA) of at least 2.000 is required.
- CASE Requirements. The following College of Arts and Sciences Education (CASE) requirements must be completed:
- CASE Foundations
- CASE Breadth of Inquiry
- CASE Culture Studies
- Diversity in the United States: 1 course
- Global Civilizations and Cultures: Not required
- CASE Critical Approaches: 1 course
- CASE Foreign Language: Proficiency in a single foreign language through the first semester of the second year of college-level coursework
- CASE Intensive Writing: 1 course
- CASE Public Oral Communication: 1 course
- Major. Completion of the major as outlined in the Major Requirements section above.
Most students must also successfully complete the Indiana University Bloomington General Education program.
Subject areas
- Any AAAD course that carries degree credit
- Any AAST course that carries degree credit
- Any ABEH course that carries degree credit
- Any AFRI course that carries degree credit
- Any AMST course that carries degree credit
- Any ANTH course that carries degree credit
- Any ARTH course that carries degree credit
- Any ASCS course that carries degree credit
- Any AST course that carries degree credit
- Any BIOC course that carries degree credit
- Any BIOL course that carries degree credit
- Any BIOT course that carries degree credit
- Any CEUS course that carries degree credit
- Any CHEM course that carries degree credit
- Any CJUS course that carries degree credit
- Any CLAS course that carries degree credit
- Any CLLC course that carries degree credit
- Any CMLT course that carries degree credit
- Any COGS course that carries degree credit
- Any COLL course that carries degree credit
- Any EALC course that carries degree credit
- Any EAS course that carries degree credit
- Any ECON course that carries degree credit
- Any ENG course that carries degree credit
- Any EURO course that carries degree credit
- Any FOLK course that carries degree credit
- Any FRIT course that carries degree credit
- Any GEOG course that carries degree credit
- Any GER course that carries degree credit
- Any GLLC course that carries degree credit
- Any GNDR course that carries degree credit
- Any HHC course that carries degree credit
- Any HISP course that carries degree credit
- Any HIST course that carries degree credit
- Any HON course that carries degree credit
- Any HPSC course that carries degree credit
- Any HUBI course that carries degree credit
- Any IMP course that carries degree credit
- Any INST course that carries degree credit
- Any INTL course that carries degree credit
- Any JSTU course that carries degree credit
- Any LAMP course that carries degree credit
- Any LATS course that carries degree credit
- Any LING course that carries degree credit
- Any LTAM course that carries degree credit
- Any MATH course that carries degree credit
- Any MELC course that carries degree credit
- Any MEST course that carries degree credit
- Any MLS course that carries degree credit
- Any MSCH course that carries degree credit
- Any NEUS course that carries degree credit
- Any OVST course that carries degree credit
- Any PACE course that carries degree credit
- Any PHIL course that carries degree credit
- Any PHYS course that carries degree credit
- Any POLS course that carries degree credit
- Any PSY course that carries degree credit
- Any REEI course that carries degree credit
- Any REL course that carries degree credit
- Any RMI course that carries degree credit
- Any SEAS course that carries degree credit
- Any SGIS course that carries degree credit
- Any SLAV course that carries degree credit
- Any SLHS course that carries degree credit
- Any SLST course that carries degree credit
- Any SOAD course that carries degree credit
- Any SOC course that carries degree credit
- Any STAT course that carries degree credit
- Any THTR course that carries degree credit